Using cavitation to measure statistics of low-pressure events in large-Reynolds-number turbulence
نویسندگان
چکیده
The structure of the pressure field of a turbulent water flow between counter-rotating disks is studied using cavitation. The flow is seeded with microscopic gas bubbles and the hydrostatic pressure is reduced until large negative pressure fluctuations trigger cavitation. Cavitation is detected via light scattering from cavitating bubbles. The spatial structure of the low-pressure events are visualized using a high-speed video system. A fast photo detector is used to measure the scaling of the cavitation statistics with the pressure. This data is used to determine the shape of the tail of the probability density function for the pressure. The tail is found to be exponential and scales more rapidly with Reynolds number than the standard deviation of the pressure. This may indicate the influence of internal intermittency. © 2000 American Institute of Physics. @S1070-6631~00!01106-5#
منابع مشابه
Numerical Predictions of Turbulent Mixed Convection Heat Transfer to Supercritical Fluids Using Various Low Reynolds Number k-e Turbulence Models
There are a number of systems in which supercritical cryogenic fluids are used as coolants or propellant fluids. In some modern military aircraft, the fuel is pressurized above its critical point and used as a coolant to remove heat from the aircraft engine. Accurate prediction of heat transfer coefficients to turbulent flows of supercritical fluids is essential in design of such systems. One o...
متن کاملStudy of Rotor Tip-Clearance Flow Using Large-Eddy Simulation
A large-eddy simulation has been performed to study the temporal and spatial dynamics of a rotor tip-clearance flow, with the objective of determining the underlying mechanisms for low pressure fluctuations downstream of the tip-gap. Simulation results are compared with experimental measurements, and favorable agreements are observed in both qualitative and quantitative sense. Typical vortical ...
متن کاملCity Research Online Evaluation of Turbulence Models Performance in Predicting Incipient Cavitation in an Enlarged Step-Nozzle
Predictive capability of RANS and LES models to calculate incipient cavitation of water in a step nozzle is assessed. The RANS models namely, Realizable k-ɛ, SST k-ω and Reynolds Stress Model did not predict any cavitation, due to the limitation of RANS models to predict the low pressure vortex cores. LES WALE model was able to predict the cavitation by capturing the shear layer instability and...
متن کاملSimulation of Low Reynolds Number Isotropic Turbulence Including the Passive Scalar
Full simulations of homogeneous isotropic turbulence containing a homogeneous passive scalar were made at low Reynolds numbers and various Prandtl numbers. The results show that the spectral behavior of the two fields are quite similar; both fields decay as power-law functions of time. However. the decay exponent is quite dependent on both the Reynolds and Prandtl numbers. The decay exponent of...
متن کاملComparison of different turbulence models in a high pressure fuel jet
In this study, modeling of a fuel jet which has been injected by high pressure into a low-pressure tank are investigated. Due to the initial conditions and the geometry of this case and similar cases (like CNG injectors in internal combustion engines (ICE)), the barrel shocks and Mach disk are observed. Hence a turbulence and transient flow will be expected with lots of shocks and waves. Accord...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000